

Falcon Series - Trace Validation Editor User Manual

Copyright © Protocol Insight. All rights reserved. Licensed software products are owned by Protocol

Insight or its suppliers, and are protected by national copyright laws and international treaty provisions.

Protocol Insight products are covered by U.S. and foreign patents, issued and pending. Information in

this manual supersedes all previously published material. Details, specifications and pricing subject to

change.

Protocol insight is a registered trademark of Protocol Insight, LLC.

MIPI and the MIPI logo are a licensed trademark of the MIPI Alliance.

UFSA and UFS Logo are a trademark of the Universal Flash Storage Association

JEDEC® and the JEDEC logo are registered trademarks of JEDEC Solid State Technology Association.

Contact Protocol Insight at:

sales@protocolinsight.com

support@protocolinsight.com

www.protocolinsight.com

mailto:sales@protocolinsight.com
mailto:support@protocolinsight.com
http://www.protocolinsight.com/

Contents
General Operation .. 1

Using Protocol Insight’s Test Editor™ ... 1

Creating a Trace Validation Test ... 4

From an existing Trace Validation test in the library .. 4

From scratch using the provided template ... 4

Basic Trace Validation Example .. 5

Advanced State Machine Concepts .. 6

Constructing UniPro vs. UFS TVs ... 6

State Machine ... 6

State .. 6

Event ... 6

Shared Event ... 6

Validator .. 7

Transition .. 7

Action .. 7

Variable ... 7

Counter ... 7

Advanced Test Editor Concepts .. 7

Rules on Values ... 7

State Machines ... 8

States .. 9

Events .. 11

Transitions ... 13

Shared Events.. 13

Shared Event Connectors .. 14

Comments ... 14

Variables ... 14

Counters .. 15

Expressions.. 15

Trace Validation File Types ... 16

General Information - Protocol Insight’s Test Editor™ ... 16

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 1

Trace Validation tests analyze UFS and UniPro traces, performing protocol sequence and packet inspection

rule checking based on the nature of the traffic. Trace Validation uses a unique protocol-aware rule

checker engine (a state machine) to validate captured traces against the JEDEC and MIPI CTS specifications

to identify protocol errors and failures.

The Protocol Insight® Trace Validation Test Editor™ allows users to create, edit and view the trace

validation analysis tests which are used by the Falcon Series instruments. The Protocol Insight Test Editor

allows users to create Trace Validation tests using the same Test Editor graphical editor that is used for

creating Advanced Triggers.

Trace Validation is available for all Falcon G300/G400 series instruments but is not available with the

Raptor M300/M400 series.

General Operation
Trace Validation tests are created and edited using the Test Editor, which can be accessed from the

Falcon application software menu at Tools →Editor →Open Editor.

For Test Editor license verification, the Falcon application software must be connected to the Falcon

instrument. Launch the Falcon application software and click the Connect button on the Toolbar to

connect to the instrument.

Once created, Trace Validation tests in the \CustomTests directory are automatically added to the list of

available Tests in the Configuration window. If the Trace Validation test isn’t listed, choosing

File→Refresh Trace Validation Test List will update the Test list.

Constructing a Trace Validation test case consists of the following steps:

1. Create a new TV test using the provided template or open a pre-defined test from the Falcon

software library.

2. Edit the State Machine to contain one Initial State and two Final States (Success and Failed), at

least one Event with one or more Validators, and appropriate Transitions between States.

3. Create the Trace Validation .pitv file generated by Trace Validation Editor by saving the State

Machine File.

Go to Test Editor™ - creating a basic Trace Validation test on Protocol Insight’s YouTube channel to

view the Test Editor Training Series videos on how to create a trace validation test.

Using Protocol Insight’s Test Editor™
To create or edit a Trace Validation test, launch Protocol Insight’s Test Editor from Tools→Editor→Open

Editor.

When Test Editor is launched an instance of Microsoft Visual Studio will open and the Protocol Insight

https://youtu.be/mvQcDTNPqTg

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 2

Test Editor plug-in will appear as a menu choice:

Select Test Editor→New→Trace Validation and a Trace Validation template will be opened in the

solution space. The solution space for the Trace Validation template includes the following components:

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 3

The Diagram 1

The Diagram is the visual representation of a State Machine. It is the creative space in the file and is

represented by the yellow background. Each template contains information about only one State

Machine and therefore only has one Diagram.

The Toolbox 2

The Toolbox contains most of the objects that you can add to a State Machine. If

the Toolbox pane is not already open, select View→Toolbox from the Visual

Studio menu.

To add a State, Event, Transition or Comment just click and drag that item from

the toolbox to the Diagram. Events can only exist as children of States, so to add

an Event, click and drag the Event toolbox item onto an existing State on the

Diagram. Transitions define the transition between Events and States. To add a

Transition, first select Transition in the toolbox, click the event you want the

transition to come from, and finally click the State the want the Transition to go

to.

The State Machine Explorer 3

The State Machine Explorer provides a simple way to find all the objects from

your State Machine in a tree view. If the State Machine Explorer pane is not

already open, select View→Other Windows→State Machine Explorer from the

Visual Studio menu.

The Properties Window 4

The Properties Windows is where the vast majority of the editing takes place in

a State Machine. Therefore, it is important that you leave this window open and

available. If you should close it, you can open it again from the View→ Properties menu option or by

pressing F4. The information displayed in the Properties Window will correspond to the item you have

selected in the diagram.

Error List 5

The Error List will display a list of Warnings and Errors present in the State Machine. If the Error List

pane is not already open, select View→Error List from the Visual Studio menu.

Warnings provide information on things that could cause unexpected behavior but will not prevent

Trace Validation from running in the Falcon software. Errors are items that need to be corrected as they

will cause problems in the Falcon software. The Trace Validation XML files will not be generated if you

have errors, but you will be still be able to save your State Machine file.

The Trace Validation template includes an Idle state, two Events and a Failed and Success state. These

are the minimum recommended objects that should be included in every Trace Validation test.

Note: Warnings that start with “Cannot find a schema that defines target namespace” are internal and

can be safely ignored.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 4

Creating a Trace Validation Test

From an existing Trace Validation test in the library
The pre-existing Trace Validation tests provided in the Falcon software library can be used as a starting

point for new tests since they can be copied and modified. Simply open an existing *.pitv or legacy *.sm

TV test file from C:\Program Files\Protocol Insight\Falcon\Data\Measurement in Trace Validation Editor

from Test Editor→Open File, modify it and save a copy with a new name to a subfolder in “C:\Users\[user

name]\Documents\Protocol Insight\Falcon\CustomTests”.

Important: Do not modify the provided Trace Validation files without first saving a copy to your

CustomTests folder. Doing so will overwrite the tests in the software library and require that they be

restored to their original state.

Important: The name of Trace Validation files must be unique or they will not load into the Falcon

software. It does not matter if they are in different folders.

From scratch using the provided template
Create a new test by selecting Test Editor→New→Trace Validation and a basic template will be opened

to start from. The template includes an Idle, Success, and Failed State along with simple Total, Success,

and Fail counters. The Success and Fail States will increment the Total counter along with the Success or

Fail counter. These are the minimum recommended objects that should be included in every TV file. With

this template, you will add states and event details that get you from Idle to Success or Fail.

Custom Trace Validation tests must be saved in “C:\Users\[user name]\Documents\Protocol

Insight\Falcon\CustomTests” in a subfolder created by the user. For example, a TV test named

MyTraceValidation that is saved to a subfolder called “C:\Users\[user name] \Documents \Protocol

Insight\Falcon\CustomTests\MyTests” will be displayed in the Test list in the Falcon software as

MyTraceValidation under the MyTests category.

Important: The name of Trace Validation files must be unique or they will not load into the Falcon

software. It does not matter if they are in different folders.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 5

Basic Trace Validation Example
The following example will further demonstrate the concepts covered in this help manual. This takes the

simple case of a device sending a data frame and the receiving device sending an AFC. It assumes that

there have been no other packets sent and that the receiving device will send an AFC for every data frame.

1. Initial State

When this State Machine is run, it will start in the Idle state and wait for its Event to fire. You will

also see we have 3 counters (Total, Success, and Fail) as well as 2 variables

(varDataFrameDirection, varSeqNum) defined.

2. Data Frame Received Event

Using Metadata Validators, the Data Frame Received event is set to fire when it sees a UniPro

Data Frame TC0 packet. It will then set both variables putting the direction the frame was seen

into varDataFrameDirection and the Frame Seq.Number into varSeqNum. The State Machine then

transitions to the Wait for AFC state.

3. Wait For AFC State

This is a commit state so any counters or log messages that have be set up to this point will be

saved. The State Machine now waits for one of the Wait for AFC State’s Events to fire.

4. Wait For AFC Events

a. AFC Received

Using validators, this event will fire if it sees a UniPro AFC TC0 packet in the opposition

direction as the original Data Frame. Direction is checked by looking for a direction no

equal to our direction variable. Using the varSeqNum variable, it also checks to see that

the Frame Seq. Number matches that of the data frame. The State Machine then

transitions to the Success state.

b. AFC Wrong Seq Num

Figure 1: State Machine Example

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 6

This event is almost identical to the AFC Received event, the only difference is that is looks

for Frame Seq. Number that does not match that of the data frame. If this event fires, we

have an error. The State Machine then transitions to the Failed state.

5. Final States

Depending on which Event fired in step 4, the State Machine will transition to one of the Final

States, Success or Failed. In either case, a message is logged and the counters are incremented to

indicate the success or failure.

Advanced State Machine Concepts
TV tests are built on a State Machine model. A state machine is a system that stores the status of

something at a given time and, based on an input, can change the status. State machines can be described

as discreet states with a set of possible events that will cause the system to move to a new state. States

can also contain a set of actions or output events that trigger based on changing input.

Constructing UniPro vs. UFS TVs
Each TV must be defined as either a UniPro or UFS TV in Trace Validation Properties. Depending on the

protocol chosen the user will be presented with different Event Validators for constructing the TV.

To access Trace Validation Properties right-click in the Diagram, the yellow background area of Trace

Validation Editor, and select Properties. Select the appropriate “Protocol” from the Properties window.

State Machine
The highest level of a file is the State Machine. There is only one State Machine in each file and it

represents the overall system through which data is passed for validation.

State
A State is a discreet status indicting where in the State Machine the validation process is at present. As

events occur, the system will move from State to State and actions can trigger that update information in

the system. All State Machines must begin with an Initial State in which the State Machine will wait for an

Event to trigger in order to move to another State. State Machines can only be in one State at any given

time.

Event
An Event defines a set of conditions (implemented as Validators) that, when all are true, will trigger a

transition to another State. States can have more than one event but only one Event can ever fire for a

given State. See the Event Evaluation Priority section for more detail.

Shared Event
Shared Events function in the same way as Events, except they can be tied to more than 1 state. This

allows you to create a single common Event for something and many States can use it. For example, you

might want to consider your test a failure if you reach the end of the trace file before the State Machine

reaches Success or Failure. Using a Shared Event, you can set up validators to check for the End of Trace

packet and link to that event from all the States in the State Machine. This keeps the diagram less cluttered

and provides a single object that can be change rather than having multiple copied and pasted Events

hanging off all the States.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 7

Validator
There are several kinds of Validators available in Events. These validators are used to look at packets or

variables to validate the data. When all the Validators on an Event are true, it will cause the Event to fire.

Transition
Transitions define which State the State Machine should enter after an Event has occurred. Each Event

can only have one associated Transition. More than one Transition may feed into a single State.

Action
Actions can occur when an Event fires or when a State is entered. Trace Validation Editor provides actions

to Log Messages, Update Counters, and Set or Modify Variables.

Variable
Variables, both Local and Global, can be used to store information for reference in many areas of a State

Machine.

Counter
Counters are used for statistics and allow the user to provide detail on how many times something

happens in a State Machine. For example, how many times a State Machine ran, succeeded, or failed or

how many of a particular type of packet were found in a trace.

Advanced Test Editor Concepts
When users create a new TV test, they are provided with a very basic State Machine template. This

template provides the basic building blocks to support either UniPro or UFS protocol, with an Initial State

named Idle and two final States, Success and Failed. In addition, the template starts with Fail, Success,

and Total Counters. Starting with this template, users select UniPro or UFS protocol and define States and

Events to move from Idle to Success or Fail.

Rules on Values
Throughout Trace Validation Editor, users will be able to set values. Values exist for variables and

validators and follow a common set of rules unless otherwise specified. Values can contain Numeric data

in the form of Hex or Integer values or string values. To specify a Hex value, you must begin the value with

“0x” followed be a string of valid Hex characters (0-9 and A-F). Values starting with 0x and containing

invalid Hex characters will cause an error. You may also store integer data in the form of whole integer

values. All other values will be treated as string data. Decimal data is not supported, so a value of 12.33

would be treated as a string.

Value Types

In most places where you can specify a Value, you will be required to choose a value type. The Value Type

tells the engine what data you want to compare and controls how the data in the Value field will be

interoperated. In addition, to minimize errors and assist in State Machine construction, Trace Validation

Editor uses a list engine to provide the appropriate Values in most Value fields based on the Value Type

selected. Types will be displayed in various ways and will be discussed in the appropriate sections later.

The Compare Type values you will see are:

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 8

• Literal – A value type of literal will cause the comparison to use the hard-coded value entered in

the Value field.

• MetaData – This will cause the engine to compare some value to the specified MetaData field of

the packet being examined.

• Fields – This will cause the engine to compare some value to the data in the specified field of the

packet being examined.

• LocalVar – This will cause the engine to compare some value to value of the specified Local

Variable.

• GlobalVar – This will cause the engine to compare some value to value of the specified Global

Variable.

• Expression – Some objects, such as variables, allow you to set their value using expressions. See

the Expressions section later for more detail.

State Machines
State Machines are the highest level parent in the file and contain all other objects. In order to select the

State Machine, click anywhere on the yellow background of the diagram.

State Machine Properties

• App Version – A String value containing the application version for which this state machine was

written. (Default: None)

• Auto Counting – A Boolean value which tells the State Machine whether or not to automatically

add counters. When true, the engine will automatically add counters for Success, Fail, and Total.

When false, the user must add any counters in the State Machine by using Counters and Counter

Actions. (Default: False)

• Auto Logging– A Boolean value which tells the State Machine whether or not to automatically log

messages. When true, the engine will automatically log success and failure messages. When false,

the user must log all messages in the State Machine by using Log Message Actions. (Default: False)

• Debug – A Boolean value which tells the State Machine whether or not it can be run in debug

mode. (Default: True)

• Description – A string value containing a description of the State Machine. (Default: None)

• Inactivity Timeout – A Boolean value which tells the State Machine whether to timeout when the

Global Inactivity Timeout is reached. (Default: True)

• Max Instances – Controls the number of instances that may be run at once. If MaxInstances is 0

then an unlimited number may run.

• Protocol – A string value containing the protocol for which this was written. This applies to Trace

Validation tests only. (Default: UniPro)

• Stimulus Test Case – A string value containing the name of the corresponding Stimulus Test Case

Category and Name that will generate an appropriate trace for this State Machine to validate. For

Example: "MyCustomCases\MyCustomStimulusFile" will establish a link to the

MyCustomStimulusFile test case in the MyCustomCases category. This will be the Stimulus case

ran automatically before the TV analysis test in CTS mode. This applies to Trace Validation tests

only. (Default: None)

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 9

• Counter List – Clicking the ellipsis in this field opens the Counter Manager dialog. See the Counters

section later for more detail.

• Variable List – Clicking the ellipsis in this field opens the Variable Manager dialog. See the

Variables section later for more detail.

States
States are the primary building blocks of a State Machine. States define the current status of the State

Machine and their Events define the next State to which the State Machine will move. When entering into

a State, any actions on the State will run and then the State Machine simply waits for an Event to fire.

There are four kinds of States available in a State Machine.

1. Initial – This is the beginning State. Each State machine may only have one Initial State. In general,

no events will transition back into an Initial State.

2. Normal – The bulk of the States in your State Machine will be Normal. These States are

transitioned to after an Event and they have their own Events which transition to other states.

3. Success – This is a Final State which should be reached if the validation of a trace was successful.

Success Log Messages and Counters should be updated here. Success States cannot have Events.

4. Fail – This is a Final State which should be reached if the validation of a trace fails. Failure Log

Messages and Counters should be updated here. Fail States cannot have Events.

State Properties

State Details

• Name – A String value containing the name of the State. This is for identification and each State

must have a unique name. (Default: StateX)

• Code Block – Internal Use Only

• Commit – A Boolean value which tells the State Machine whether to commit Log messages and

counters when this State is reached. Logs and counters will not show up in the application unless

a State with Commit set to true has been reached. (Default: False)

• Kind – A String value which identifies the type of State as describe above. (Default: Normal)

Default Timeout Failure

• Duration – An Integer value specifying how long to wait in Duration Units for another Event to

fire before timing out and moving to the specified Fail State. A value of 0 indicates that a default

timeout is disabled. All other Default Timeout Failure values will be ignored when Duration is 0.

(Default: 0)

• Duration Units – A string value specifying the type of units to wait for before timing out. You can

wait for some number of packets or for an amount of time (nanoseconds, milliseconds, or

microseconds). (Default: packets)

• Fail State – The State to move to when the timeout occurs. (Default: None)

• Message – The message to Log before moving to the specified failure state. (Default: None)

State Actions

You can define actions that will be executed when the State is entered during validation. There are four

type of actions available, Log Message, Counter, Set Variable, and Modify Variable. To add an action, right

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 10

click the compartment on the State for the type of Action you need and select Add new….. Alternatively,

you can Right Click the State and select Add and then the type of item you want to add. In either case the

new Action will appear in the appropriate compartment. You can select the new action and edit its

properties in the Properties Window. Actions are deleted via Right Click and Delete or by selecting them

and pressing the Delete key. The Actions available are described below.

Log Message Actions

Log a message to the Falcon software with the given Status and Text. The text is displayed in the Trace

Validation Results window in the Falcon software along with an icon representing the status. For more

information, see the Interpreting Trace Validation Results section in the Falcon Series User Manual.

The possible Status values are:

• Failed

Used to indicate a failure in the Trace Validation. Messages of this type are usually logged just

before transitioning to a Fail State or in a Fail State.

• Warning

Warning messages are logged to indicate an issue that needs attention but that does not cause

the validation to fail.

• Passed

The Passed status is used to log messages after a successful validation has occurred. These types

of messages are most often logged in a Success State.

• Info

Info messages are used to provide further information to the Falcon software. These message are

not meant to indicate an issue with validation but simply to provide additional details or an

explanation as to why something may not have been tested.

Counter Actions

Counter actions are used to update the value of a counter. In order to use a Counter Action, a Counter

must be present in the State Machine, see the Counters section. When defining a Counter action, chose

the counter from the list of available counters and then set a value. The Value property can be set to an

integer value or to ++. Setting a counter value to ++ tells the State Machine to add 1 to the current value

of the counter.

Set Variable Actions

Set Variable Actions let you set or change a Variable’s Value. In order to use a Set Variable Action, a

Variable must be present in the State Machine, see the Variables section. Variables follow the rules

outlined in the Rules on Values section above. To set a variable, select the Set Variable Action and in the

Properties Window:

1. Choose the Variable to set

2. Select the Variable Value Type (See the Value Type section above)

3. Enter a Variable Value

When you choose a Variable Value Type of Expression, you are able to enter an expression into the

Variable Value field. The resultant value will be stored in the variable. See the Expressions section for

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 11

detail.

Modify Variable Actions

The Modify Variable Action is reserved for adding or subtracting from an Integer or Hex valued variable.

Selecting an Action of ++ will increase the variable by 1, while selecting -- will decrease it by one. There is

also a Max Value property which will allow the variable to wrap. For example, if the Max Value is 0xFF and

the variable value is 0xFF, a ++ action would cause the variable to exceed the Max Value so it wraps back

to 0. This is helpful when checking counters that wrap, such as UniPro Frame Sequence Number. This

functionality also works for -- if the variable value is 0, it will wrap back to the Max Value. You can also set

a variable value using the result of an Expression.

Events
Events are the main driving force behind a State Machine. You use Events to identify the data you are

looking for in a trace, and they then allow you to move to the next State in the State Machine. There are

two types of Events you can create, Packet Events which let you examine the packets in the trace, or

Timeout Events which let you transition if a timer is exceeded before another Event fires.

Event Actions

There are actions available in Events to log messages, and work with counters and variables. The actions

available within an Event are identical to those used in States, see the State Actions section above for

more detail.

Event Properties

• Name – A String value containing the name of the Event. This is for identification and each Event

must have a unique name within its parent State. (Default: EventX)

• Type – A String value which indicates if this is a Packet Event or a Timeout Event. (Default:

PacketEvent)

• Next State – A value which identifies the Name of the next State that this Event will transition to

when firing. Note: In general Next State is not set via this property, this will be set when creating

a Transition. (Default: None)

• Evaluation Priority – An Integer value that identifies the order in which the Events are to be

evaluated, see Event Evaluation Priority. (Default: 10)

• Duration – Only used for Timeout Events. An Integer value specifying how long to wait in Units for

another Event to fire before this timeout Event fires. (Default: 0)

• Units – Only used for Timeout Events. A string value specifying the type of units to wait for before

timing out. You can wait for some number of packets or for an amount of time (nanoseconds,

milliseconds, or microseconds). (Default: packets)

Validators

Validators are objects which allow the user to check data in a trace and validate it against some other

source. When all the Validators in an Event are True, the Event will fire and transition to the next State.

Data can be validated against other fields, metadata, variables, or user supplied values. There are three

types of Validators that can be added to an Event, Metadata Validators, Field Validators, and Variable

Validators. They all work in a similar fashion, the principle difference being the type of data you want to

validate.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 12

Metadata Validators

Metadata Validators allow you to compare the Metadata of a packet to other data. The properties of a

Metadata Validator are broken into two sections. The first, Validation Source, contains the Metadata Tag.

This is the piece of Metadata from the packet being evaluated that you want to compare. The second

section, Validation Target, allows the user to specify to what they want the packet’s Metadata to be

compared. There are three properties that work together for the Validation Target. First, the Compare

Type specifies what type of data to compare (see the Value Types section above). Next, the Compare

Value is the actual Value that will be compared. Finally, the Comparison property allows the user to select

the type of comparison to perform. All Validators support the following Comparisons:

• == (Equal)

• != (Not Equal)

• > (Greater Than)

• < (Less Than)

• >= (Greater Than or Equal To)

• <= (Less Than or Equal To)

For Example, the following values would look for a Data Frame TC0 packet.

• Metadata Tag: PacketName

• Compare Type: Literal

• Compare Value: Data Frame TC0

• Comparison: ==

Field Validators

Field Validators allow you to compare the data in a field of a packet to other data. The properties of a

Field Validator are broken into the same two sections as the properties of a Metadata Validator. The only

difference is that instead of a Metadata Tag, a Field Name is required for the Validation Source.

Variable Validators

Variable Validators allow you to compare the data in a Variable to other data. The properties of a Variable

Validator are broken into the same two sections as the properties of a Metadata Validator. The only

difference is that instead of a Metadata Tag, a Variable is required for the Validation Source.

Event Evaluation Priority

Event Evaluation Priority allows the user to control how Trace Validation will handle Events when there

are more than one attached to a single State. Since only one Event can ever fire for a State, this is an issue

if there are multiple Events with Validators that all evaluate to True at the same time. In this case, the

event with the lowest Evaluation Priority will fire and the others will be ignored. If multiple Events are

true and have the same Evaluation Priority, there is no guarantee as to which Event will fire. This is more

clearly explained with the following examples.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 13

Example 1: One Event with all Validators True

Note: Evaluation Priority doesn’t affect Events in this case.

Event Name All Validators True? Evaluation Priority Event Fires?

Event 1 Yes 13 Yes

Event 2 No 1 No

Event 3 No 2 No

Event 4 No 3 No

Example 2: Multiple Event with all Validators True

Note: Evaluation Priority does affect Events in this case.

Event Name All Validators True? Evaluation Priority Event Fires?

Event 1 Yes 13 No

Event 2 No 1 No

Event 3 Yes 2 Yes

Event 4 Yes 3 No

Example 3: Multiple Event with all Validators True and Same Priority

Event Name All Validators True? Evaluation Priority Event Fires?

Event 1 Yes 10 ?

Event 2 No 10 No

Event 3 Yes 10 ?

Event 4 Yes 10 ?

These examples illustrator how Event Evaluation Priority affects which Event fires. If there is ever a case

where multiple Events can have all their Validators evaluate to true (as is the case in Example 3), then

specifying an Evaluation Priority is important to avoid unexpected results.

Transitions
Transitions simply tell the State Machine which State to move to after and Event fires. Transitions are

represented in the Diagram as lines between Events and States. In order to tell the difference between a

Transition and the connector between States and their child events, transitions have an arrowhead on the

end that connects to a State.

Shared Events
Shared Events are configured almost identically to regular Events, with only a few differences. First,

Shared Events can be linked to multiple States. Second, Evaluation Priority is not checked for Shared

Events, and finally, they can be set to run before or after a States regular Events. To link a Shared Event

to a State and control when they run, you use a Shared Event Connector.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 14

Shared Event Connectors
Shared Event Connectors, much like Transitions, simply tell the State Machine that a State should use the

connected Shared Event. Shared Event Connectors are represented on the graph as dashed lines between

States and Shared Events. Shared Event Connectors also contain a diamond end on the State side of the

connection with the Execution Group (either First or Last) listed next to the diamond. The Execution Group

tells the State where in Evaluation Priority the Shared Events should be evaluated. Within the collection

of Shared Events that a State references, there is no guaranteed order, so the best practice is to make

sure that only one Shared Event can be evaluated to True at any given time. The Execution Group is

modified via the Properties Window accessible when selecting the Shared Event Connector on the

diagram. The follow lists the order in which Shared Events and Events will be evaluated for a given State:

1. All Shared Events in the First Execution Group – Order not guaranteed.

2. All regular Events owned by the State – Evaluated in Evaluation Priority Order.

3. All Shared Events in the Last Execution Group – Order not guaranteed.

Comments
Comments allow you to add a simple comment box to the diagram. This can be used as documentation or

notes on the diagram to provide detail or explain a complicated state.

Variables
Variables have been covered in several other areas as

they are used to store data for later reference. You

manage the variable with the Variable Manager dialog

which you can access in two places. In the State Machine

Properties there is a Property called Variable List with a

Value or “Manage Variables”. Selecting the ellipsis to the

right of Manage Variables open the Variable Manager. Alternatively, you can right click a blank space on

the diagram itself and select Manage Variables. Via this dialog, you can add a new variable by providing a

name, type, and default value. Variables added here will be available in your State Machine. To delete a

Variable, you must click the row selection box to the left of the Variable you wish delete and click the

Delete button.

Variable Properties

• Name – A String value containing the name of the Variable. This is for identification and each

Variable must have a unique name within State Machine. (Default: NewVariable)

• Type – A String value which indicates the type of variable. LocalVar indicates a local variable that

can only be referenced in the current running instance of the State Machine in which it is defined.

GlobalVar means a global variable that can be referenced from any running State Machine.

(Default: LocalVar) Important: Because of the complexity of the interactions of Global Variables

using them can lead to unexpected results. We recommend they be used only as a last resort

and only by expert level users.

• Default – This is the value to which the Local Variables will be set when the Initial State begins.

Values can still be set in the Initial State by using a Set Variable Action to override the Default

Value. Default Value follows the rules explained earlier in the Rules on Values section. Global

Figure 2: Variable Manager

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 15

Variables will always have a default value of 0 so you cannot set a default value in the Variable

Manager. (Default: 0)

Counters
Counters have been covered in the Counter Actions section. Counters are managed like Variables, but via

the Counter Manager. In the State Machine Properties click the ellipsis to the right of Manage Counters

or right-click the diagram and select Manage Counters. Via this dialog, you can add a new counter by

providing a name. Counters added here will be available in your State Machine. In order to delete a

Counter, you must click the row selection box to the left of the Counter you wish delete and click the

Delete button.

Expressions
Expressions are simple one-line code elements that can be used as validators or to set a variable's value.

The result of any expression must be a single value. You can use expressions in two places, either to set

the value of a variable in a Set Variable Action or in a Validator Expression. Code in a Set Variable Action

can return any single value to be stored in the variable while code in Validator Expression must return a

Boolean. Here are some examples of valid Validator Expressions which all evaluate to a Boolean.

• data.PacketMetaData["PacketName" == "PACP_SET_req"

• data.PacketFields["MIBattribute "] == "0x2041"

• data.PacketMetaData["Time"] - data.Locals["vTime"] > 5000

The following are examples of valid expression for Set Variable Actions which all return a single value.

• data.PacketMetaData["PacketType"]

• 2L + data.Locals["vCounter"]

• data.Locals["vCounter"] + data.Locals["vCounter"] – 10L

Values in Expressions

The values of the objects in your code are treated as either string, long, or Boolean. All string values are

case sensitive. When comparing or setting long values, you will need to append "L" to any numeric value

you enter. For example, data.Locals["vPacketCount"] = 50L.

Internal Dictionaries

There are a handful of dictionaries accessible via Expressions. They are all set up with the scope of the

data object and all contain members which vary depending on the dictionary you choose.

data.PacketMetaData – This dictionary contains all the metadata for the packet. The members are the

metadata fields that exist on each packet such as Direction, PacketType, PacketName, etc.

data.PacketFields – This dictionary contains all the field data for the packet. The members are all the fields

that exist on each packet such as MIBAttribute, Frame Seq. Num, CReq, LUN, etc.

data.Locals - This dictionary contains all of the packages local variables. This dictionary can be used for

both reading (get) and writing (set) variable values. The members are all the packages local variables.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 16

Trace Validation File Types
Protocol Insight Trace Validation File (.pitv)

The Protocol Insight Trace Validation .pitv file contains all the information needed to create, edit and

run Trace Validation tests. The .pitv file is used by Test Editor and runs with the Falcon application

software.

.pitv files consist of three sub-files, which can be accessed by renaming the .pitv file to a zip file. These

sub-files should not be accessed except by expert users. The sub-files are .sm, .sm.diagram, and .piv

(see below). The .sm and .piv files use XML and are therefore readable and editable in any XML or Text

editor, however due to their complexity it is highly recommended that these files are only modified

using Test Editor.

Legacy *.piv files are fully forward compatible with the v1.8.0 or later Falcon application software that

also edits and runs the *.pitv files.

State Machine File (.sm)

The State Machine file has a .sm extension. These are the files that users open to directly edit with Trace

Validation Editor. They contain all the pertinent data related to the State Machine and its objects.

State Machine Diagram File (.sm.diagram)

The State Machine Diagram file has a .sm.diagram extension. These files are not directly edited, but they

are required. They will exist in the same directory with the same name as the State Machine file. They

contain all the location and size data necessary to display objects visually on the diagram in Trace

Validation Editor.

Trace Validation File (.piv)

The Protocol Insight Trace Validation .piv file is generated by Trace Validation Editor when you save a

State Machine File with no errors, and is saved inside a *.pitv file. The .piv file contains all the information

that the Falcon software requires in order to validate trace data using a Trace Validation State Machine.

These files are generated each time a user saves and will only be generated if the State Machine contains

no errors.

General Information - Protocol Insight’s Test Editor™
Test Editor™ is used to create and modify Advanced Trigger, Trace Validation and UniPro Stimulus Test

files. UFS Stimulus Test file creation will be added with a future release.

For proper Test Editor license verification, the Falcon application software must be connected to the

Falcon instrument. Launch the Falcon application software and click the Connect button on the Toolbar

to connect to the instrument and verify the license.

Multiple Advanced Trigger and Trace Validation files can be opened simultaneously, but only one

Stimulus Test file can be opened at a time.

While the Advanced Trigger and Trace Validation files are edited using the graphical .sm.diagram drag-

and-drop model, currently all Stimulus Tests must be edited in the solution space in C#. .sm.diagram

drag-and-drop editing of Stimulus Tests will be added in a future release.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 17

Host PC requirements

• Intel® Core™ i7 or i9 processor or equivalent.

• 32 GB RAM recommended, 16 GB minimum.

• NVMe solid state drive with 500GB free space recommended, 256GB minimum free space.

• Thunderbolt 3 enabled type-c connector is required if connecting to a Falcon instrument.

• Microsoft Windows 10 64-bit operating system

Software requirements

• Windows 10 64-bit operating system

• Microsoft SQL Server 2014 or later

• Microsoft Visual Studio 2015 Community or Professional editions

or

Microsoft Visual Studio 2015 Isolated Shell

• Protocol Insight application software and firmware version 1.8.0.8170 or later.

Specifications and descriptions in this document
are subject to change without notice.

© Protocol Insight, LLC 2017, 2018, 2019
Revision 2.2, January 31, 2020

P a g e | 18

© Protocol Insight 2017, 2018, 2019, 2020

